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Abstract—Intrusion Detection Systems (IDSs) are known as 
useful tools for identifying malicious attempts over the network. 
The most essential part to an IDS is the searching engine that 
inspects every packet through the network. To strictly defend the 
protectorate, an IDS must be able to inspect packets at line rate 
and also provide guaranteed performance even under heavy 
attacks. Therefore, in this paper we propose an efficient string 
matching algorithm (named ACM) with compact memory as well 
as high worst-case performance. Using a magic number heuristic 
based on the Chinese Remainder Theorem, the proposed ACM 
significantly reduces the memory requirement without bringing 
complex processes. Furthermore, the latency of off-chip memory 
references is drastically reduced. The proposed ACM can be 
easily implemented in hardware and software. As a result, ACM 
enables cost-effective and efficient IDSs.  

Keywords- Content Inspection, Intrusion Detection, Network 
Security, String Matching. 

I.  INTRODUCTION 
Network services become very popular today and many 

companies have provided their services over the Internet. 
Once a system is broken into or suffered denial of service 
attacks, this will cause serious damage to a company. 
Therefore, people demand more secure networks and systems. 
Intrusion Detection Systems (IDSs) are one of the most useful 
tools to identifying malicious attempts over the network and 
protecting the systems without modifying the end-user 
software. Different from firewalls that only check specified 
fields of the packet headers, IDSs detect the malicious 
information in the payloads. An IDS typically contains a 
database that describes the fingerprints (patterns) of malicious 
behavior. The number of patterns is generally a few thousands 
and still increasing. The patterns may appear anywhere in any 
packet payload. Therefore, IDSs must be capable of in-depth 
packet inspection even when suffering serious attacks; 
otherwise the protectorate will not be defended strictly. 
Without doubt, the most essential technology to an IDS is a 
powerful multiple-pattern matching algorithm.  

Many multiple-pattern matching algorithms have been 
proposed. Boyer-Moore [1] is a well-known single-pattern 
matching algorithm. The Boyer-Moore-based algorithms [1]-
[3] use the bad character heuristic to improve the performance 
of pattern matching. Utilizing the bad group-character 
heuristic, a variant of the bad character heuristic, Wu-Manber 
[4] builds tables as pre-filters to improve the matching 

performance. However, there are two drawbacks in these 
algorithms [1]-[4]: (1) The smaller length of the minimum 
patterns will result in worst performance. Unfortunately, the 
minimum pattern in the IDSs is very small. (2) Although these 
algorithms provide better average-case performance, they do 
not perform well in the worst case. Dharmapurikar et al [5] 
and Song et al [6] use the Bloom Filters as pre-filters in their 
designs of hardware-based IDSs. The Bloom Filter could be 
optimized by using parallel architecture in the hardware, but 
the throughput of Bloom Filters decreases seriously in the 
software implementations [8]. A hierarchical multiple-pattern 
matching algorithm proposed in [7] builds small tables as pre-
filters and improves the best-case and average-case 
performance by an occurrence-frequency heuristic. However, 
in these filter-based algorithms [4]-[7], if there is a match in 
the pre-filters, the exact string matching in the second stage, 
usually using sequential search, is also required. Furthermore, 
the performance of algorithms [1]-[7] decreases while the 
number of patterns increases. Consequently, these algorithms 
have bad worst-case performance.  

Guaranteed performance is very important especially for 
the equipment in the core and edge network. The Aho-
Corasick algorithm (AC) had the best worst-case 
computational time complexity [9]. However, as for realistic 
implementations, the performance of an algorithm is not only 
affected by the computation time, but also strongly affected by 
the number of required memory references. The off-chip 
memory reference costs about 80 ~ 200 clock cycles and the 
gap may keep increasing [8]. Because of requiring large 
memory space, the AC needs frequent off-chip memory 
references and then results in poor performance. Tuck et al 
modified the AC with a compressed data structure, which 
reduced the memory size, but also increased the processing 
time [10]. Therefore, in this paper, we will propose a practical 
multiple-pattern matching algorithm that has better worst-case 
performance as well as smaller required memory. The 
proposed novel scheme is based on the property of Chinese 
Remainder Theorem and contributes modifications to the AC.  

II. RELATED WORK 
A multiple-pattern matching algorithm is used to search 

the input string T for all occurrences of any pattern pi∈P, or 
to corroborate that no pattern belonging to the set P is in T. In 
the IDS, T is the packet stream and P is a set of signatures of 
the malicious contents predefined in IDSs. In this section, we 
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(a) Goto function. 

 
(b) Fail and Output Function 

Figure 1.The Aho-Corasick algorithm. 

will describe the multiple-pattern matching algorithms, AC 
algorithm [9] and its variant [10], which theoretically provide 
the best worst-case performance.   

A. The Aho-Corasick Algorithm 
AC is an automaton-based algorithm. There are three 

functions in the AC: Goto(st, code), Fail(st) and Output(st), 
where st is the state identification and code is a scanned 
symbol. The Goto function is a state transition function, which 
is constructed by a set of patterns: P. The Goto(st, code) 
returns the next state or a fail message for the current scanned  
code of the input string. The construction of the Goto function 
is based on the principle that every prefix of the patterns is 
only represented by one state. The Fail function points to a 
state that is the longest suffix of the current state. The Output 
function stores the matched patterns corresponding to the 
current state. These three functions are constructed off-line 
and will be used in the in-line matching stage.1  

Figure 1 shows an example of the Goto, Fail, and Output 
functions, where a pre-defined pattern set P={she, he, his, 
hers}. In the matching stage, given an input T = ‘sihe’ for 
example, the matching procedure scans one symbol at a time 
and starts from the rooted state of the automaton (State 0). 
Since, Goto(0, ‘s’) = 1, the machine goes to State 1 and reads 
the next symbol ‘i’. Because ‘i’ is not an expected symbol for 
the State 1 (Goto(1, ‘i’) = fail), the Fail function is called and 
get Fail(1) = 0. Then the machine goes to the State 0, and 
reads the next symbol ‘h’. As Goto(0, ‘h’) = 4 and Goto(4, ‘e’) 
= 5, the machine goes to State 5 and has a valid output: 
Output(5) = {he}. As a result, we can know that the input T 
contains one pattern ‘he’. This example illustrates how the AC 
works.  

B.  The Basic Implementation of the Aho-Corasick Algorithm 
To efficiently implement the AC algorithm, a proper data 

structure for the state machine is required. The paper [9] 
mentioned that the Goto and Fail functions could be combined 
into one function: ( , )st codeδ . According to [9], the basic 
original data structure ACO is shown in Figure 2(a), where Λ  
is the alphabet set of patterns and | Λ | is the size of the 
alphabet set. The ACO structure represents one state of the AC 
algorithm. The pointer next_state indicates the address of the  

                                                        
1For the detailed construction procedures, please refer to [9]. 

struct ACO{ 
struct ACO *next_state[ | Λ | ]; 
struct Result *pattern_list; 
}; 

struct ACB { 
bitmap next_flag[| Λ |]; 
struct ACB *fail_ptr; 
struct ACB *next_start; 
struct Result *pattern_list; 
}; 

(a) The basic data structure. (b) The data structure of ACB. 
Figure 2. The data structure for one state. 

 
Figure 3. The relations of one transition pair. 

next state and pattern_list points to the corresponding Output 
function. We can see that all addresses of next states can be 
obtained directly and only one state transition is required per 
symbol. However, in a system of 32-bit pointers and | Λ | = 
256, the ACO structure requires 1028 bytes per state. For an 
IDS, ACO needs about 10 MB to construct the state machine. 

C. The Aho-Corasick Algorithm with Bitmap 
Tuck et al proposed a bitmap structure for the AC 

algorithm (ACB) to compress the state machine (Figure 2(b)) 
[10]. The state machine is still based on the Goto and Fail 
functions of the AC algorithm. The bitmap next_flag[a] 
indicates whether there is a valid forwarding path for the input 
symbol a (Goto(st, a)≠fail). The ACB structure can reduce 
the memory to only 44 Bytes for each state. However, to 
obtain the address of the next state for any input symbol a, 
ACB matching has to calculate the offset to the starting pointer 
next_start by scanning every bits prior to a in the bitmap array 
and accumulating the number of flagged bits. This routine is 
called popcount. For example, if the input symbol is ‘s’, as the 
ASCII code of ‘s’ is 0x76, ACB matching has to read 118 bits 
and accumulate these bits to obtain the offset for ‘s’. We can 
see that the accumulation routine is very time-consuming. In 
the worst case, it costs | Λ | bit-access, | Λ |+1 adds and one 
multiply for each input symbol to obtain the address. Tuck et 
al admitted that the popcount is very expensive for software 
implementations [10]. Although in the hardware 
implementations the popcount may have the opportunity to be 
optimized, the complexity and the cost are still high.      

III. A COST-EFFECTIVE STRING MATCHING ALGORITHM 
The automaton-based string matching algorithm has the 

advantage that each input symbol will be read only once and 
no reverse scan is required, independent of input strings and 
the number of patterns. Since AC is known as the best 
theoretical worst-case algorithm, we will focus on modifying 
the AC algorithm to be practical for implementations. In this 
section, we will also propose a novel data structure that 
requires a small amount of memory and does not increase the 
processing time.   

In an automaton, since the next state only depends on the 
current state and the current input, simply consider the parent 
and children states as shown in Figure 3. Assume that we can 
find a simple function, say ℜ , so that the input symbols {h, s,  
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struct ACM{ 
bitmap next_flag[| Λ |];   
struct ACM *fail_ptr;   
struct ACM *next_start;  
struct Result *pattern_list;   
long_int MagicNum;      
};  

Figure 4. The data structure with a magic number. 

 
Figure 5. The architecture of ACM state machine, where the number in the 
parentheses is the magic number. 
i} can be mapped to the corresponding child nodes {0, 1, 2} in 
order. That is, in a general formulation: 

{ }1 2, ,..., {0,1,..., 1}ka a a kℜ→ − ,           (1) 

where ai are the input symbols and k is the number of children. 
Assume there is a magic number χ and we define ℜ  as 

: % ( ) 1i if a iχℜ = − , i=1, 2, ..., k,            (2) 

where f is a function that translates the symbol set into a 
numerical set, and n % m returns the remainder when n is 
divided by m. In other words, ℜ  acts as a path decoder that 
returns the corresponding path for each input. Thus, if we can 
prove the magic number χ exists, ℜ  will be obtained. Since 
ℜ  has only one simple modulo operation, the state transition 
process will be fast.  

A. The Magic Number 
At first, we have to prove that the magic number exists. 

The Chinese Remainder Theorem (CRT) can help us to 
prove this [16]. The theorem is as follows: 

Chinese Remainder Theorem (CRT). Let 
1

k

i
i

M m
=

= ∏ , where 

mi are integers and relatively prime; that is, gcd(mi, mj) = 1 for 
1 ,i j k≤ ≤ , and i j≠ .2 Let x1, x2,..., xk be integers. Consider 
the system of congruences: 

1 1(mod )X x m≡  

2 2(mod )X x m≡                             (3) 

... 
(mod )k kX x m≡ , 

where X and xi are said to be congruent modulo mi, 1 i k≤ ≤ . 
Then there exists exactly one X and { }0,1,..., 1X M∈ − .         ■ 

Therefore, if let the function f number the symbols by 

                                                        
2The gcd(a, b) means the greatest common divisor of a and b. 

 Procedure ACM_Matching 
 Input: A string: T, the starting pointer of the ACM state machine: 

rootState, and an array with prime numbers: Prime. 
 Output: The matched pattern set T: PM. 

1 Initialize: PM ← ∅ . State ← rootState; 
2 For each input symbol: code ← T[i] do 
3   While State->next_flag[code] is not set or State ≠ rootState do 
4     State ← State->fail_ptr; 
5   End 
6   If State->next_flag[code] is set then  
7     If State->MagicNum = 0 then  
8       State ← State->next_start; 
9     Else 

10       State ← State->next_start +   
 ((State->MagicNum)%Prime[code])*Sizeof_ACM; 

11     PM
 ← PM ∪ Out(State->pattern_list); 

12 End 
13 Return; 

Figure 6. The matching procedure using the ACM structure. 

prime numbers, that means 
{ }1 2 1 2, ,..., { , ,..., }f

k ka a a m m m→ , then by CRT we know the 
magic number χ exists. χ is now the X in CRT. Since f is one-
to-one mapping, we can use a table, Prime, to store the prime 
number for each possible input symbol. The Prime table has at 
most | Λ | entries, and so that it is very small and can be kept in 
the on-chip cache. Thus the prime number of an input symbol 
can be obtained by a fast lookup. To obtain the magic number 
χ, we can use the following algorithm.  

Chinese Remainder Theorem Algorithm. Let zi = M/mi and 
yi = 1(mod )i iz m−  for each i = 1, 2,..., k, where 1

iz −  means the 
multiplicative inverse of zi. (Note that 1

iz −  exists if gcd(zi, mi) 
= 1.) Then the solution to the congruence system of the 
Chinese Remainder Theorem is  

1
( ) mod

k

i i i
i

X x y z M
=

= ∑ .                (4)■ 

For example, assume we have three valid symbols {h, s, i} 
that have paths to the child state as shown in Figure 3. Assign 
three prime numbers {2, 3, 5} for {h, s, i} respectively. 
According to Figure 3, we want to find a magic number χ that 
satisfies χ % 2 = 0, χ % 3 = 1, and χ % 5 = 2. Using the CRT 
algorithm, we get z1=15, z2= 10, z3= 6 and y1=1, y2= 1, y3= 1. 
By Equ. (4), χ = 22. Using ‘s’ for test: as the prime number of 
‘s’ is 3 and χ = 22, we know that the next state of the input 
symbol ‘s’ is the node Child 1 ( χ % 3 = 1). 

B. The Multiple-Pattern Matching with a Magic Number 
We propose a data structure with a magic number, named 

ACM, as shown in Figure 4. In the structure ACM, a bitmap 
next_flag is used for fast checking whether there is a valid 
child. To reduce the size, only one pointer next_start pointing 
to the first valid child state is stored in the data structure. The 
MagicNum stores the magic number χ. The ACM state 
machine is organized based on the Goto and Fail functions of 
the AC algorithm. Figure 5. illustrates the memory 
organization of the ACM state machine. Note that when there 
is no valid child for the leaf nodes, the magic numbers of the 
leaf nodes are labeled NULL. 
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Figure 7. The total memory requirement for the ACM, ACB and ACO 
structure in the case of 1200 and 200 patterns respectively. 

The matching procedure using the ACM structure is shown 
in Figure 6. In the ACM matching, given an input symbol a 
for example, if next_flag[a] is not flagged, then the machine 
traverses the pointer fail_ptr until a state has a flagged 
next_flag[a] or the machine returns to the root state. If the 
machine traverses to the root state and the next_flag[a] is not 
flagged, the machine will stop in the root state and read the 
next symbol. Otherwise, while next_flag[a] is flagged, using 
the simple function ℜ  as shown in Equ. (2), the pointer to the 
next state is 

nextState = next_start + ℜ  × Sizeof_ACM                           (5) 
  = next_start + (MagicNum % Prime[a]) × Sizeof_ACM, 

where Sizeof_ACM is the structure size and ℜ  is the offset to 
the first valid next state (next_start). Obviously, only three 
reads (next_start, MagicNum and Prime[a]) and three 
operations are required for indicating the next state. According 
to the lines 7-10 of the ACM matching procedure, the cost is 
the same in the worst case. As the number of fail transitions is 
never more than the depth of a state, the number of state 
transitions for each input symbol will be at most 2 [9]. 
Consequently, the cost of fail transition is small.    

Due to the definition of ℜ  and CRT, ACM matching has a 
special property: if there is only one child, χ will be zero. 
Observing the ACM state machine, we can find that 
approaching the leaves, more and more states have only one 
child state. Therefore, this heuristic can be used in the ACM 
matching to reduce the computation. That is, if the 
next_flag[a] is set and the MagicNum in the current state is 
zero, we know that there is only one child state and the pointer 
to the next state for the symbol a is next_start. The forwarding 
path can be obtained directly without computing the function 
ℜ .   

The ACM structure is only 52 bytes for each state when 
the size of magic number is 64 bits, which is much smaller 
than the ACO structure of 1028 bytes, and so that it 
successfully reduces the memory requirement. Additionally, 
the state transition time will be fast because of the simple path 
decoder ℜ  and the magic number heuristic. 

We illustrate the ACM matching with Figure 5., and 
assume the input string is ‘ish’. Scan the string from left to 
right, and start from the root state at 0x000. As the bitmap 
next_flag[‘i’] is not flagged, the machine stays in the state at 
0x000. Reading the next symbol ‘s’, we find that it is flagged, 
and then get MagicNum = 22 in the state 0x000. As Prime[‘s’] 
= 11 and the next_start of the state 0x000 is 0x040, the 

address of the next state for ‘s’ can be calculated by 
0x040+(22%11)×0x34 = 0x040, where the size of ACM is 52 
bytes (0x34). Then the machine goes to the state at 0x040 and 
checks the bitmap for the next symbol ‘h’. Since the 
next_flag[‘h’] is flagged and the MagicNum is zero, ACM 
matching knows that it is the only child and the address of the 
next state is 0x0c0, which is read directly from the next_start 
of the state 0x040.     

C. Implementation Issues 
According to the definition of the magic number and the 

CRT theorem, we notice that if there are too many child states 
and the alphabet set is large, the magic number will be a large 
number. In the hardware implementations, this will not be a 
problem. Many papers proposed optimized hardware designs 
for high performance modular arithmetic with long operands, 
which can archive one operation per clock cycle [11]. 
Therefore, the ACM matching algorithm can be easily 
implemented in the hardware and gain high performance. 
However, in the software implementations, there is a 
limitation on the length of an operand. To overcome this, if the 
magic number is too large for the software implementations, 
the running sum scheme will be used instead of ℜ  in the 
ACM matching. A union structure is used here and then eight 
running sums and the 64-bits magic number share the same 
memory space. Fortunately, in the case of importing 1200 
distinct patterns from the Snort database [12], only 0.078% 
states of the state machine has to use the running sum scheme. 
Another issue of implementing ACM on some general 
processors is sometimes the expensive cost of modulo 
operations. We will show the simulation results later and 
illustrate that ACM outperforms ACB even when running on a 
general processor without optimized modulo instruction.  

IV. RESULTS 
In the simulations, with detachment we use the free and 

real pattern set released by Snort [12]. Since the patterns of 
Snort are written in mixed plain text and hex formatted 
bytecodes, we assume that the alphabet size (| Λ |) is 256 in 
the simulations. To evaluate the performance of algorithms in 
a real intense attack, we use a trace from the Capture-the-Flag 
contest held at the Defcon9 as the input streams of the 
programs. The Defcon Capture-the-Flag contest is the largest 
security hacking game, which tries to break into the servers of 
others while protecting your own server hiding several 
security holes [13]. In the simulations, we evaluate the 
performance by calculating the number of instructions used in 
the algorithms and then multiplying the cost of each 
instruction. The costs of the instructions refer to a real AMD 
processor [14], where the number of instructions per clock for 
add, mov, mul, cmp, bt, and mod is 3, 3, 1, 3, 3, 1/71 
respectively, and the operation cost of mod is high. 

Let CM represent the total memory requirement and CT be 
the average execution time. Figure 7 and Figure 8 show CM 
and CT for the ACM, ACB and ACO matching respectively in 
the case of 200 patterns and 1200 patterns. Note that the CM of 
ACM includes the memory requirement of the Prime table. 
We can see that the total memory requirement of ACM is 
519.2 KB in the case with a big pattern set |P| = 1200, which is  
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Figure 8. The average execution time per symbol of ACM, ACB, and ACO 
matching in the case of 1200 and 200 patterns respectively. 

TABLE 1. THE NORMALIZED COST OF ACM, ACB AND ACO IN THE CASE OF 
200 AND 1200 PATTERNS. 

 C/CACM 

(Num. of Patterns = 200) 
C/CACM 

(Num. of Patterns = 1200) 
ACM 1 1 
ACB 5.124 5.923 
ACO 2.851 2.168 

ACO-100 145.42 110.61 
 

only 5.1% of the basic AC and a little (18%) more than that of 
ACB. Furthermore, the memory size of ACM is still in the 
scale of the on-chip cache that general chipsets support. 
Therefore, we can say that the ACM can be easily 
implemented in the hardware and software, and can gain high 
performance due to no off-chip memory access.  

To date, the largest size of on-chip memory supported by 
the FPGAs is about 1 MB and the size of L1 cache and L2 
cache of general processors is only 128 KB ~ 2 MB [15]. 
Therefore, according to the memory requirement shown in 
Figure 7, the full state machine of ACO can not be stored in 
the on-chip memory. The external memory references are 
required in the ACO matching. Figure 8 draws the average 
execution time per byte of ACM, ACB and ACO matching 
respectively in the case of importing 200 and 1200 patterns. 
There are two cases for ACO matching: the result labeling 
ACO is not assessed any latency penalty for the external 
memory references, and the other one labeling ACO-100 
needs 100 cycles for each external fetch. Figure 8 shows that 
ACM performs about 5.67 times better than ACB in the case 
of 1200 patterns, and 5.34 times over ACB in the case of 200 
patterns. Comparing ACM with ACO and ACO-100, we can 
see that ACM outperforms ACO-100 and the external memory 
references drastically affect the performance of ACO 
matching. Note that the cost of modulo operation in the 
simulations is extremely higher than others. Even assessed the 
penalty of high operation cost, ACM still outperforms ACB 
and is moderately slower than ACO. If implemented in 
embedded systems or FPGAs, ACM will be more efficient.  

As the required time and memory are usually trade-off, to 
compare the overall costs of these three algorithms, we define 
an evaluation function C: C = CM × CT. The higher C means 
the more cost is required in the implementations. The total 
cost for ACM, ACB and ACO is labeled CACM, CACB, and CACO 
respectively. For easy comparison, we show the normalized 
cost (=C/CACM) of each algorithm in Table 1. Table 1 
demonstrates that the cost of ACM is smaller than others. 
Even requiring a little more memory than ACB, ACM has 
better overall efficiency, which is about 5.1 ~ 5.9 times better 

than ACB. Although the theoretic execution time of ACO is 
shorter than that of ACM, the overall cost of ACM is about 
2.1 ~ 2.8 times smaller. For realistic implementations, we can 
see that the overall cost of ACM is about 110 ~ 145 times 
better than that of ACO-100. Therefore, we can say that ACM 
is a time- and memory-efficient algorithm for string matching. 

V. CONCLUSIONS 
In this paper, an efficient multiple-pattern matching 

algorithm, ACM, for intrusion detection has been proposed. 
Combining a novel scheme using a magic number derived 
from the Chinese Remainder Theorem with the modified Aho-
Corasick algorithm, the ACM algorithm requires only a small 
amount of memory while providing high worst-case 
performance. ACM is a practical algorithm and especially 
suitable for the heavy-loaded IDSs. Simulations show that the 
overall efficiency of ACM is about 2 ~ 145 times better than 
the state-of-the-art algorithms. Consequently, ACM enables 
cost-effective IDSs that can survive in heavy attacks.  
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