
A Time- and Memory- Efficient String Matching
Algorithm for Intrusion Detection Systems

Tzu-Fang Sheu
Institute of Communication Engineering

National Tsing-Hua University
Hsinchu, Taiwan
sunnie@ieee.org

Nen-Fu Huang
Department of Computer Science
 National Tsing-Hua University

Hsinchu, Taiwan
nfhuang@cs.nthu.edu.tw

Hsiao-Ping Lee
Dept. of Information Management

Science
Chung Shan Medical University

Taichung, Taiwan

Abstract—Intrusion Detection Systems (IDSs) are known as
useful tools for identifying malicious attempts over the network.
The most essential part to an IDS is the searching engine that
inspects every packet through the network. To strictly defend the
protectorate, an IDS must be able to inspect packets at line rate
and also provide guaranteed performance even under heavy
attacks. Therefore, in this paper we propose an efficient string
matching algorithm (named ACM) with compact memory as well
as high worst-case performance. Using a magic number heuristic
based on the Chinese Remainder Theorem, the proposed ACM
significantly reduces the memory requirement without bringing
complex processes. Furthermore, the latency of off-chip memory
references is drastically reduced. The proposed ACM can be
easily implemented in hardware and software. As a result, ACM
enables cost-effective and efficient IDSs.

Keywords- Content Inspection, Intrusion Detection, Network
Security, String Matching.

I. INTRODUCTION
Network services become very popular today and many

companies have provided their services over the Internet.
Once a system is broken into or suffered denial of service
attacks, this will cause serious damage to a company.
Therefore, people demand more secure networks and systems.
Intrusion Detection Systems (IDSs) are one of the most useful
tools to identifying malicious attempts over the network and
protecting the systems without modifying the end-user
software. Different from firewalls that only check specified
fields of the packet headers, IDSs detect the malicious
information in the payloads. An IDS typically contains a
database that describes the fingerprints (patterns) of malicious
behavior. The number of patterns is generally a few thousands
and still increasing. The patterns may appear anywhere in any
packet payload. Therefore, IDSs must be capable of in-depth
packet inspection even when suffering serious attacks;
otherwise the protectorate will not be defended strictly.
Without doubt, the most essential technology to an IDS is a
powerful multiple-pattern matching algorithm.

Many multiple-pattern matching algorithms have been
proposed. Boyer-Moore [1] is a well-known single-pattern
matching algorithm. The Boyer-Moore-based algorithms [1]-
[3] use the bad character heuristic to improve the performance
of pattern matching. Utilizing the bad group-character
heuristic, a variant of the bad character heuristic, Wu-Manber
[4] builds tables as pre-filters to improve the matching

performance. However, there are two drawbacks in these
algorithms [1]-[4]: (1) The smaller length of the minimum
patterns will result in worst performance. Unfortunately, the
minimum pattern in the IDSs is very small. (2) Although these
algorithms provide better average-case performance, they do
not perform well in the worst case. Dharmapurikar et al [5]
and Song et al [6] use the Bloom Filters as pre-filters in their
designs of hardware-based IDSs. The Bloom Filter could be
optimized by using parallel architecture in the hardware, but
the throughput of Bloom Filters decreases seriously in the
software implementations [8]. A hierarchical multiple-pattern
matching algorithm proposed in [7] builds small tables as pre-
filters and improves the best-case and average-case
performance by an occurrence-frequency heuristic. However,
in these filter-based algorithms [4]-[7], if there is a match in
the pre-filters, the exact string matching in the second stage,
usually using sequential search, is also required. Furthermore,
the performance of algorithms [1]-[7] decreases while the
number of patterns increases. Consequently, these algorithms
have bad worst-case performance.

Guaranteed performance is very important especially for
the equipment in the core and edge network. The Aho-
Corasick algorithm (AC) had the best worst-case
computational time complexity [9]. However, as for realistic
implementations, the performance of an algorithm is not only
affected by the computation time, but also strongly affected by
the number of required memory references. The off-chip
memory reference costs about 80 ~ 200 clock cycles and the
gap may keep increasing [8]. Because of requiring large
memory space, the AC needs frequent off-chip memory
references and then results in poor performance. Tuck et al
modified the AC with a compressed data structure, which
reduced the memory size, but also increased the processing
time [10]. Therefore, in this paper, we will propose a practical
multiple-pattern matching algorithm that has better worst-case
performance as well as smaller required memory. The
proposed novel scheme is based on the property of Chinese
Remainder Theorem and contributes modifications to the AC.

II. RELATED WORK
A multiple-pattern matching algorithm is used to search

the input string T for all occurrences of any pattern pi∈P, or
to corroborate that no pattern belonging to the set P is in T. In
the IDS, T is the packet stream and P is a set of signatures of
the malicious contents predefined in IDSs. In this section, we

This work was supported by the MediaTek Fellowship, MOE Program for
Promoting Academic Excellent of Universities (II) under the grant number
NSC-94-2752-E-007-002-PAE, and NSC project under the grant number
NSC-94-2213-E007-021. ©1-4244-0357-X/06/$20.00 2006 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

(a) Goto function.

(b) Fail and Output Function

Figure 1.The Aho-Corasick algorithm.

will describe the multiple-pattern matching algorithms, AC
algorithm [9] and its variant [10], which theoretically provide
the best worst-case performance.

A. The Aho-Corasick Algorithm
AC is an automaton-based algorithm. There are three

functions in the AC: Goto(st, code), Fail(st) and Output(st),
where st is the state identification and code is a scanned
symbol. The Goto function is a state transition function, which
is constructed by a set of patterns: P. The Goto(st, code)
returns the next state or a fail message for the current scanned
code of the input string. The construction of the Goto function
is based on the principle that every prefix of the patterns is
only represented by one state. The Fail function points to a
state that is the longest suffix of the current state. The Output
function stores the matched patterns corresponding to the
current state. These three functions are constructed off-line
and will be used in the in-line matching stage.1

Figure 1 shows an example of the Goto, Fail, and Output
functions, where a pre-defined pattern set P={she, he, his,
hers}. In the matching stage, given an input T = ‘sihe’ for
example, the matching procedure scans one symbol at a time
and starts from the rooted state of the automaton (State 0).
Since, Goto(0, ‘s’) = 1, the machine goes to State 1 and reads
the next symbol ‘i’. Because ‘i’ is not an expected symbol for
the State 1 (Goto(1, ‘i’) = fail), the Fail function is called and
get Fail(1) = 0. Then the machine goes to the State 0, and
reads the next symbol ‘h’. As Goto(0, ‘h’) = 4 and Goto(4, ‘e’)
= 5, the machine goes to State 5 and has a valid output:
Output(5) = {he}. As a result, we can know that the input T
contains one pattern ‘he’. This example illustrates how the AC
works.

B. The Basic Implementation of the Aho-Corasick Algorithm
To efficiently implement the AC algorithm, a proper data

structure for the state machine is required. The paper [9]
mentioned that the Goto and Fail functions could be combined
into one function: (,)st codeδ . According to [9], the basic
original data structure ACO is shown in Figure 2(a), where Λ
is the alphabet set of patterns and | Λ | is the size of the
alphabet set. The ACO structure represents one state of the AC
algorithm. The pointer next_state indicates the address of the

1For the detailed construction procedures, please refer to [9].

struct ACO{
struct ACO *next_state[| Λ |];
struct Result *pattern_list;
};

struct ACB {
bitmap next_flag[| Λ |];
struct ACB *fail_ptr;
struct ACB *next_start;
struct Result *pattern_list;
};

(a) The basic data structure. (b) The data structure of ACB.
Figure 2. The data structure for one state.

Figure 3. The relations of one transition pair.

next state and pattern_list points to the corresponding Output
function. We can see that all addresses of next states can be
obtained directly and only one state transition is required per
symbol. However, in a system of 32-bit pointers and | Λ | =
256, the ACO structure requires 1028 bytes per state. For an
IDS, ACO needs about 10 MB to construct the state machine.

C. The Aho-Corasick Algorithm with Bitmap
Tuck et al proposed a bitmap structure for the AC

algorithm (ACB) to compress the state machine (Figure 2(b))
[10]. The state machine is still based on the Goto and Fail
functions of the AC algorithm. The bitmap next_flag[a]
indicates whether there is a valid forwarding path for the input
symbol a (Goto(st, a)≠fail). The ACB structure can reduce
the memory to only 44 Bytes for each state. However, to
obtain the address of the next state for any input symbol a,
ACB matching has to calculate the offset to the starting pointer
next_start by scanning every bits prior to a in the bitmap array
and accumulating the number of flagged bits. This routine is
called popcount. For example, if the input symbol is ‘s’, as the
ASCII code of ‘s’ is 0x76, ACB matching has to read 118 bits
and accumulate these bits to obtain the offset for ‘s’. We can
see that the accumulation routine is very time-consuming. In
the worst case, it costs | Λ | bit-access, | Λ |+1 adds and one
multiply for each input symbol to obtain the address. Tuck et
al admitted that the popcount is very expensive for software
implementations [10]. Although in the hardware
implementations the popcount may have the opportunity to be
optimized, the complexity and the cost are still high.

III. A COST-EFFECTIVE STRING MATCHING ALGORITHM
The automaton-based string matching algorithm has the

advantage that each input symbol will be read only once and
no reverse scan is required, independent of input strings and
the number of patterns. Since AC is known as the best
theoretical worst-case algorithm, we will focus on modifying
the AC algorithm to be practical for implementations. In this
section, we will also propose a novel data structure that
requires a small amount of memory and does not increase the
processing time.

In an automaton, since the next state only depends on the
current state and the current input, simply consider the parent
and children states as shown in Figure 3. Assume that we can
find a simple function, say ℜ , so that the input symbols {h, s,

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

struct ACM{
bitmap next_flag[| Λ |];
struct ACM *fail_ptr;
struct ACM *next_start;
struct Result *pattern_list;
long_int MagicNum;
};

Figure 4. The data structure with a magic number.

Figure 5. The architecture of ACM state machine, where the number in the
parentheses is the magic number.
i} can be mapped to the corresponding child nodes {0, 1, 2} in
order. That is, in a general formulation:

{ }1 2, ,..., {0,1,..., 1}ka a a kℜ→ − , (1)

where ai are the input symbols and k is the number of children.
Assume there is a magic number χ and we define ℜ as

: % () 1i if a iχℜ = − , i=1, 2, ..., k, (2)

where f is a function that translates the symbol set into a
numerical set, and n % m returns the remainder when n is
divided by m. In other words, ℜ acts as a path decoder that
returns the corresponding path for each input. Thus, if we can
prove the magic number χ exists, ℜ will be obtained. Since
ℜ has only one simple modulo operation, the state transition
process will be fast.

A. The Magic Number
At first, we have to prove that the magic number exists.

The Chinese Remainder Theorem (CRT) can help us to
prove this [16]. The theorem is as follows:

Chinese Remainder Theorem (CRT). Let
1

k

i
i

M m
=

= ∏ , where

mi are integers and relatively prime; that is, gcd(mi, mj) = 1 for
1 ,i j k≤ ≤ , and i j≠ .2 Let x1, x2,..., xk be integers. Consider
the system of congruences:

1 1(mod)X x m≡

2 2(mod)X x m≡ (3)

...
(mod)k kX x m≡ ,

where X and xi are said to be congruent modulo mi, 1 i k≤ ≤ .
Then there exists exactly one X and { }0,1,..., 1X M∈ − . ■

Therefore, if let the function f number the symbols by

2The gcd(a, b) means the greatest common divisor of a and b.

 Procedure ACM_Matching
 Input: A string: T, the starting pointer of the ACM state machine:

rootState, and an array with prime numbers: Prime.
 Output: The matched pattern set T: PM.

1 Initialize: PM ← ∅ . State ← rootState;
2 For each input symbol: code ← T[i] do
3 While State->next_flag[code] is not set or State ≠ rootState do
4 State ← State->fail_ptr;
5 End
6 If State->next_flag[code] is set then
7 If State->MagicNum = 0 then
8 State ← State->next_start;
9 Else

10 State ← State->next_start +
 ((State->MagicNum)%Prime[code])*Sizeof_ACM;

11 PM
 ← PM ∪ Out(State->pattern_list);

12 End
13 Return;

Figure 6. The matching procedure using the ACM structure.

prime numbers, that means
{ }1 2 1 2, ,..., { , ,..., }f

k ka a a m m m→ , then by CRT we know the
magic number χ exists. χ is now the X in CRT. Since f is one-
to-one mapping, we can use a table, Prime, to store the prime
number for each possible input symbol. The Prime table has at
most | Λ | entries, and so that it is very small and can be kept in
the on-chip cache. Thus the prime number of an input symbol
can be obtained by a fast lookup. To obtain the magic number
χ, we can use the following algorithm.

Chinese Remainder Theorem Algorithm. Let zi = M/mi and
yi = 1(mod)i iz m− for each i = 1, 2,..., k, where 1

iz − means the
multiplicative inverse of zi. (Note that 1

iz − exists if gcd(zi, mi)
= 1.) Then the solution to the congruence system of the
Chinese Remainder Theorem is

1
() mod

k

i i i
i

X x y z M
=

= ∑ . (4)■

For example, assume we have three valid symbols {h, s, i}
that have paths to the child state as shown in Figure 3. Assign
three prime numbers {2, 3, 5} for {h, s, i} respectively.
According to Figure 3, we want to find a magic number χ that
satisfies χ % 2 = 0, χ % 3 = 1, and χ % 5 = 2. Using the CRT
algorithm, we get z1=15, z2= 10, z3= 6 and y1=1, y2= 1, y3= 1.
By Equ. (4), χ = 22. Using ‘s’ for test: as the prime number of
‘s’ is 3 and χ = 22, we know that the next state of the input
symbol ‘s’ is the node Child 1 (χ % 3 = 1).

B. The Multiple-Pattern Matching with a Magic Number
We propose a data structure with a magic number, named

ACM, as shown in Figure 4. In the structure ACM, a bitmap
next_flag is used for fast checking whether there is a valid
child. To reduce the size, only one pointer next_start pointing
to the first valid child state is stored in the data structure. The
MagicNum stores the magic number χ. The ACM state
machine is organized based on the Goto and Fail functions of
the AC algorithm. Figure 5. illustrates the memory
organization of the ACM state machine. Note that when there
is no valid child for the leaf nodes, the magic numbers of the
leaf nodes are labeled NULL.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

519.1 438.8

10252.9

1912.4

81.997.2

1

10

100

1000

10000

100000

ACM ACB ACO

M
em

or
y

(K
B

)

1200 patterns 200 patterns

Figure 7. The total memory requirement for the ACM, ACB and ACO
structure in the case of 1200 and 200 patterns respectively.

The matching procedure using the ACM structure is shown
in Figure 6. In the ACM matching, given an input symbol a
for example, if next_flag[a] is not flagged, then the machine
traverses the pointer fail_ptr until a state has a flagged
next_flag[a] or the machine returns to the root state. If the
machine traverses to the root state and the next_flag[a] is not
flagged, the machine will stop in the root state and read the
next symbol. Otherwise, while next_flag[a] is flagged, using
the simple function ℜ as shown in Equ. (2), the pointer to the
next state is

nextState = next_start + ℜ × Sizeof_ACM (5)
 = next_start + (MagicNum % Prime[a]) × Sizeof_ACM,

where Sizeof_ACM is the structure size and ℜ is the offset to
the first valid next state (next_start). Obviously, only three
reads (next_start, MagicNum and Prime[a]) and three
operations are required for indicating the next state. According
to the lines 7-10 of the ACM matching procedure, the cost is
the same in the worst case. As the number of fail transitions is
never more than the depth of a state, the number of state
transitions for each input symbol will be at most 2 [9].
Consequently, the cost of fail transition is small.

Due to the definition of ℜ and CRT, ACM matching has a
special property: if there is only one child, χ will be zero.
Observing the ACM state machine, we can find that
approaching the leaves, more and more states have only one
child state. Therefore, this heuristic can be used in the ACM
matching to reduce the computation. That is, if the
next_flag[a] is set and the MagicNum in the current state is
zero, we know that there is only one child state and the pointer
to the next state for the symbol a is next_start. The forwarding
path can be obtained directly without computing the function
ℜ .

The ACM structure is only 52 bytes for each state when
the size of magic number is 64 bits, which is much smaller
than the ACO structure of 1028 bytes, and so that it
successfully reduces the memory requirement. Additionally,
the state transition time will be fast because of the simple path
decoder ℜ and the magic number heuristic.

We illustrate the ACM matching with Figure 5., and
assume the input string is ‘ish’. Scan the string from left to
right, and start from the root state at 0x000. As the bitmap
next_flag[‘i’] is not flagged, the machine stays in the state at
0x000. Reading the next symbol ‘s’, we find that it is flagged,
and then get MagicNum = 22 in the state 0x000. As Prime[‘s’]
= 11 and the next_start of the state 0x000 is 0x040, the

address of the next state for ‘s’ can be calculated by
0x040+(22%11)×0x34 = 0x040, where the size of ACM is 52
bytes (0x34). Then the machine goes to the state at 0x040 and
checks the bitmap for the next symbol ‘h’. Since the
next_flag[‘h’] is flagged and the MagicNum is zero, ACM
matching knows that it is the only child and the address of the
next state is 0x0c0, which is read directly from the next_start
of the state 0x040.

C. Implementation Issues
According to the definition of the magic number and the

CRT theorem, we notice that if there are too many child states
and the alphabet set is large, the magic number will be a large
number. In the hardware implementations, this will not be a
problem. Many papers proposed optimized hardware designs
for high performance modular arithmetic with long operands,
which can archive one operation per clock cycle [11].
Therefore, the ACM matching algorithm can be easily
implemented in the hardware and gain high performance.
However, in the software implementations, there is a
limitation on the length of an operand. To overcome this, if the
magic number is too large for the software implementations,
the running sum scheme will be used instead of ℜ in the
ACM matching. A union structure is used here and then eight
running sums and the 64-bits magic number share the same
memory space. Fortunately, in the case of importing 1200
distinct patterns from the Snort database [12], only 0.078%
states of the state machine has to use the running sum scheme.
Another issue of implementing ACM on some general
processors is sometimes the expensive cost of modulo
operations. We will show the simulation results later and
illustrate that ACM outperforms ACB even when running on a
general processor without optimized modulo instruction.

IV. RESULTS
In the simulations, with detachment we use the free and

real pattern set released by Snort [12]. Since the patterns of
Snort are written in mixed plain text and hex formatted
bytecodes, we assume that the alphabet size (| Λ |) is 256 in
the simulations. To evaluate the performance of algorithms in
a real intense attack, we use a trace from the Capture-the-Flag
contest held at the Defcon9 as the input streams of the
programs. The Defcon Capture-the-Flag contest is the largest
security hacking game, which tries to break into the servers of
others while protecting your own server hiding several
security holes [13]. In the simulations, we evaluate the
performance by calculating the number of instructions used in
the algorithms and then multiplying the cost of each
instruction. The costs of the instructions refer to a real AMD
processor [14], where the number of instructions per clock for
add, mov, mul, cmp, bt, and mod is 3, 3, 1, 3, 3, 1/71
respectively, and the operation cost of mod is high.

Let CM represent the total memory requirement and CT be
the average execution time. Figure 7 and Figure 8 show CM
and CT for the ACM, ACB and ACO matching respectively in
the case of 200 patterns and 1200 patterns. Note that the CM of
ACM includes the memory requirement of the Prime table.
We can see that the total memory requirement of ACM is
519.2 KB in the case with a big pattern set |P| = 1200, which is

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

0

20

40

60

80

100

ACM ACB ACO ACO-100

Ti
m

e
(c

yc
les

)

1200 patterns 200 patterns

Figure 8. The average execution time per symbol of ACM, ACB, and ACO
matching in the case of 1200 and 200 patterns respectively.

TABLE 1. THE NORMALIZED COST OF ACM, ACB AND ACO IN THE CASE OF
200 AND 1200 PATTERNS.

 C/CACM

(Num. of Patterns = 200)
C/CACM

(Num. of Patterns = 1200)
ACM 1 1
ACB 5.124 5.923
ACO 2.851 2.168

ACO-100 145.42 110.61

only 5.1% of the basic AC and a little (18%) more than that of
ACB. Furthermore, the memory size of ACM is still in the
scale of the on-chip cache that general chipsets support.
Therefore, we can say that the ACM can be easily
implemented in the hardware and software, and can gain high
performance due to no off-chip memory access.

To date, the largest size of on-chip memory supported by
the FPGAs is about 1 MB and the size of L1 cache and L2
cache of general processors is only 128 KB ~ 2 MB [15].
Therefore, according to the memory requirement shown in
Figure 7, the full state machine of ACO can not be stored in
the on-chip memory. The external memory references are
required in the ACO matching. Figure 8 draws the average
execution time per byte of ACM, ACB and ACO matching
respectively in the case of importing 200 and 1200 patterns.
There are two cases for ACO matching: the result labeling
ACO is not assessed any latency penalty for the external
memory references, and the other one labeling ACO-100
needs 100 cycles for each external fetch. Figure 8 shows that
ACM performs about 5.67 times better than ACB in the case
of 1200 patterns, and 5.34 times over ACB in the case of 200
patterns. Comparing ACM with ACO and ACO-100, we can
see that ACM outperforms ACO-100 and the external memory
references drastically affect the performance of ACO
matching. Note that the cost of modulo operation in the
simulations is extremely higher than others. Even assessed the
penalty of high operation cost, ACM still outperforms ACB
and is moderately slower than ACO. If implemented in
embedded systems or FPGAs, ACM will be more efficient.

As the required time and memory are usually trade-off, to
compare the overall costs of these three algorithms, we define
an evaluation function C: C = CM × CT. The higher C means
the more cost is required in the implementations. The total
cost for ACM, ACB and ACO is labeled CACM, CACB, and CACO
respectively. For easy comparison, we show the normalized
cost (=C/CACM) of each algorithm in Table 1. Table 1
demonstrates that the cost of ACM is smaller than others.
Even requiring a little more memory than ACB, ACM has
better overall efficiency, which is about 5.1 ~ 5.9 times better

than ACB. Although the theoretic execution time of ACO is
shorter than that of ACM, the overall cost of ACM is about
2.1 ~ 2.8 times smaller. For realistic implementations, we can
see that the overall cost of ACM is about 110 ~ 145 times
better than that of ACO-100. Therefore, we can say that ACM
is a time- and memory-efficient algorithm for string matching.

V. CONCLUSIONS
In this paper, an efficient multiple-pattern matching

algorithm, ACM, for intrusion detection has been proposed.
Combining a novel scheme using a magic number derived
from the Chinese Remainder Theorem with the modified Aho-
Corasick algorithm, the ACM algorithm requires only a small
amount of memory while providing high worst-case
performance. ACM is a practical algorithm and especially
suitable for the heavy-loaded IDSs. Simulations show that the
overall efficiency of ACM is about 2 ~ 145 times better than
the state-of-the-art algorithms. Consequently, ACM enables
cost-effective IDSs that can survive in heavy attacks.

REFERENCES
[1] R.S. Boyer and J.S. Moor. A Fast String Searching Algorithm.

Communications of the ACM, Vol. 20, No. 10, pp. 762-772, October 1977.
[2] R. Nigel Horspool. Practical Fast Searching in Strings. Sofetware Practice

and Experience, Col. 10, No. 6, pp. 501-506, 1980.
[3] C. Jason Coit, Stuart Staniford, and Joseph McAlerney. Towards Faster

String Matching for Intrusion Detection or Exceeding the Speed of Snort.
Proceedings of the 2nd DARPA Information Survivability Conference and
Exposition, 2001.

[4] Sun Wu and Udi Manber. A Fast Algorithm for Multi-Pattern Searching.
Tech. Rep. TR94-17, Department of Computer Science, University of
Arizona, May 1994.

[5] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and John
W. Lockwood. Deep Packet Inspection Using Parallel Bloom Filters. IEEE
Micro, Vol. 24, No. 1, Jan 2004, pp. 52-61.

[6] Haoyu Song and John W. Lockwood. Multi-pattern Signature Matching
for Hardware Network Intrusion Detection Systems. Proceedings of IEEE
Globecom 2005. St. Louis, MO, Nov. 28, 2005.

[7] Tzu-Fang Sheu, Nen-Fu Huang and Hsiao-Ping Lee. A Novel Hierarchical
Matching Algorithm for Intrusion Detection Systems. Proceedings of IEEE
Globecom 2005. Vol. 3, pp. 1691-1695, St. Louis, MO, Nov. 28, 2005.

[8] Ozgun Erdogan and Pei Cao. Hash-AV: Fast Virus Signature Scanning by
Cache-Resident Filters. Proceedings of IEEE Globecom 2005. St. Louis,
MO, Nov. 28, 2005.

[9] A.V. Aho and M.J. Corasick. Efficient string matching: an aid to
bibliographic search. Communications of the ACM, Vol. 18, Np. 6, pp.
330-340, June 1975.

[10] Nathan Tuck, Timothy Sherwood, Brad Calder, George Varghese.
Deterministic Memory –Efficient String Matching Algorithms for Intrusion
Detection. Proceedings of the IEEE Infocom Conference, Hong Kong,
March 2004.

[11] A. J. Elbirt and C. Paar. Towards and FPGA Architecture Optimized for
Publick-Key Algorithms. Proceedings of the SPIE’s Symposium on Voice,
Viedo, and Data Communications. Sept 1999.

[12] Snort. http://www.snort.org.
[13] Crispin Cowan. Defcon Capture the Flag: Defending Vulnerable Code

from Intense Attack. DARPA DISCEX III Conference, Washington DC,
April 2003.

[14] Torbjorn Granlund. Instruction Latencies and Throughput for AMD and
Intel x86 processors. http://swox.com/doc/x86-timing.pdf. Sep. 2005.

[15] Intel Corp. http://processorfinder.intel.com/scripts/default.asp.
[16] Yuke Wang. New Chinese Remainder Theorems. Conference Record of

the Thirty-Second Asilomar Conference on Signals, Systems & Computers.
Vol. 1, pp. 165-171, Nov. 1998.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

	Select a link below
	Return to Proceedings

